Integrated Financial Planning: Time Value of Money
1.1 Child Education Planning,
2. Retirement Planning (Importance I/Y),
3.2 Child Education Planning,
4.1 Child Care Planning,
5.2 Child Care Planning.

Integrated Financial Planning: Time Value of Money

1.1 Child Education Planning,

Time Value of Money

$>$ The 3 steps for the calculations for retirement planning and education planning are the same to determine a lump sum required today.
$>$ We use education planning in insurance planning when we want to know a lump sum amount $\mathrm{T}=0$ to fund future education.
$>$ We use education planning in basic family financial planning for determining a yearly or monthly savings target

The 3 steps for the calculations for retirement planning and education planning are the same:

1. Step \#1 Inflate the current cash flow amount or expense for the number of years until required (start of retirement or university i.e. in the future) to determine the first year's cash flow need. This step uses the rate of inflation only.
2. Step 2. Calculate the amount needed at the beginning of retirement or university (i.e., not today) to fund the inflation-adjusted cash flow required for the client to maintain purchasing power throughout the anticipated retirement period. This step uses the real (i.e., inflationadjusted) rate of return, and is almost always calculated as an annuity due (i.e. in BGN

3. Step 3. The third step can either solve for a lump sum amount or annual payments needed today to accumulate the retirement fund. As this step only involves the investment return, we will use the investment, or discount rate.

PV

Time Value of Money: Education Planning 1 of 4

Let's assume your clients have one child who is currently six years old and will be in college for four years, beginning at age 18. We will further assume that a year of college expenses totals $\$ 12,000$, inflation for college costs is four percent, and our clients can earn seven percent on their investments. We will apply the real/inflation-adjusted rate to reflect how inflation offsets investment return.

	nflate \$12	1	\% rate $=$ \$19,219.39
1.	12 N		
2.	4 I/YR	T_{0}	Start Ed.
3.	-12,000 PV		
4.	0 PMT		$F V=P V(1+i)^{n}$
5.	CPT FV = 1		

Time Value of Money

Inflation and Serial Payments

The Fisher equation:

$$
R_{r}=\left\lfloor\frac{1+R_{n}}{1+i}-1\right\rfloor \times 100
$$

As an example, calculate the real return when the nominal return is 7 percent and inflation is 4.0 percent.

$$
\left\lfloor\frac{1.07}{1.04}-1\right\rfloor \times 100=2.8846
$$

Where:
$R_{r}=$ Real return
$R_{n}=$ Nominal return
$i=$ Inflation

The 3 steps for the calculations for retirement planning and education planning are the same:

1. Step \#1 Inflate the current cash flow amount or expense for the number of years until required (start of retirement or university i.e. in the future) to determine the first year's cash flow need. This step uses the rate of inflation only. $\xrightarrow{12,000} \mathbf{F V}$
$T_{0} \quad 19,212.39$ Start Ed.
2. Step 2. Calculate the amount needed at the beginning of retirement or university (i.e., not today) to fund the inflation-adjusted cash flow required for the client to maintain purchasing power throughout the anticipated retirement period. This step uses the real (i.e., inflationadjusted) rate of return, and is almost always calculated as an annuity due (i.e. in BGN

3. Step 3. The third step can either solve for a lump to accumulate the retirement fund. As this step only involves the investment return, we will use the investment, or discount rate.

PV

Let's assume your clients have one child who is currently six years old and will be in college for four years, beginning at age 18 . We will further assume that a year of college expenses totals $\$ 12,000$, inflation for college costs is four percent, and our clients can earn seven percent on their investments. We will apply the real/inflation-adjusted rate to reflect how inflation offsets investment return.

Step 2. Calculate the future amount needed to fund 4 years of payments that increase annually at the rate of inflation with remaining funds continuing to earn seven percent return. (Calculation done in BEGIN mode)

1.	4 N	
2.	$2.8846 \mathrm{I} / \mathrm{YR}$	Inflation-adjusted interest rate
3.	$-19,212 \mathrm{PMT}$	calculation: $[(1.07 / 1.04-1] \times 100$
4.	0 FV	$=2.8846 \%$
5.	$\mathrm{CPT} \mathrm{PV}=73,676.07$	

The 3 steps for the calculations for retirement planning and education planning are the same:

1. Step \#1 Inflate the current cash flow amount or expense for the number of years until required (start of retirement or university i.e. in the future) to determine the first year's cash flow need. This step uses the rate of inflation only. $\xrightarrow{12,000} \mathbf{F V}$
$T_{0} \quad 19,212.39$ Start Ed.
2. Step 2. Calculate the amount needed at the beginning of retirement or university (i.e., not today) to fund the inflation-adjusted cash flow required for the client to maintain purchasing power throughout the anticipated retirement period. This step uses the real (i.e., inflationadjusted) rate of return, and is almost always calculated as an annuity due (i.e. in BGN

3. Step 3. The third step can either solve for a lump sum amount or annual payments needed today to accumulate the retirement fund. As this step only involves the investment return, we will use the investment, or discount rate.

PV

Let's assume your clients have one child who is currently six years old and will be in college for four years, beginning at age 18 . We will further assume that a year of college expenses totals $\$ 12,000$, inflation for college costs is four percent, and our clients can earn seven percent on their investments. We will apply the real/inflation-adjusted rate to reflect how inflation offsets investment return.

Step 3. Discount the amount from Step 2-12 years back to "today" to determine the lump sum needed to fund the future income stream.

1. 12 N
2. $\quad 7 \mathrm{I} / \mathbf{Y} \mathbf{R}$
3. 0 PMT
4. $73,678 \mathrm{FV}$
5. $\mathrm{CPT} \mathrm{PV}=32,714$
(Use the 7\% discount rate rather than the inflationadjusted (real) rate because you are just determining the investment amount and have already factored inflation in the calculation.)

Let's assume your clients have one child who is currently six years old and will be in college for four years, beginning at age 18 . We will further assume that a year of college expenses totals $\$ 12,000$, inflation for college costs is four percent, and our clients can earn seven percent on their investments. We will apply the real/inflation-adjusted rate to reflect how inflation offsets investment return.

Step 3. We could also adjust question - how much has to be saved at the end of each month to reach that same goal? Mode $=$ End, $\mathrm{P} / \mathrm{Y}=12$

1.	$12 \times 12=144 \mathrm{~N}$
2.	$7 \mathrm{I} / \mathrm{YR}$
3.	0 PV
4.	$-73,678$ FV

(Use the 7\% discount rate rather than the inflationadjusted (real) rate because you are just determining the investment amount and have already factored inflation in the calculation.)
5. $\mathrm{CPT} \mathrm{PMT}=327.90$

Can your client $\$ 327.90$ each month to reach the goal?

The 3 steps for the calculations for retirement planning and education planning are the same:

1. Step \#1 Inflate the current cash flow amount or expense for the number of years until required (start of retirement or university i.e. in the future) to determine the first year's cash flow need. This step uses the rate of inflation only. $\xrightarrow{12,000} \mathbf{F V}$
$T_{0} \quad 19,212.39$ Start Ed.
2. Step 2. Calculate the amount needed at the beginning of retirement or university (i.e., not today) to fund the inflation-adjusted cash flow required for the client to maintain purchasing power throughout the anticipated retirement period. This step uses the real (i.e., inflationadjusted) rate of return, and is almost always calculated as an annuity due (i.e. in BGN

3. Step 3. The third step can either solve for a lump sum amount or annual payments needed today to accumulate the retirement fund. As this step only involves the investment return, we will use the investment, or discount rate.

PV \longleftarrow FV

